8,563 research outputs found

    A quantum Monte Carlo algorithm realizing an intrinsic relaxation

    Full text link
    We propose a new quantum Monte Carlo algorithm which realizes a relaxation intrinsic to the original quantum system. The Monte Carlo dynamics satisfies the dynamic scaling relation τξz\tau\sim \xi^z and is independent of the Trotter number. Finiteness of the Trotter number just appears as the finite-size effect. An infinite Trotter number version of the algorithm is also formulated, which enables us to observe a true relaxation of the original system. The strategy of the algorithm is a compromise between the conventional worldline local flip and the modern cluster loop flip. It is a local flip in the real-space direction and is a cluster flip in the Trotter direction. The new algorithm is tested by the transverse-field Ising model in two dimensions. An accurate phase diagram is obtained.Comment: 9 pages, 4 figure

    Local electronic structure of interstitial hydrogen in MgH2_2 inferred from muon study

    Full text link
    Magnesium hydride has great potential as a solid hydrogen (H) storage material because of its high H storage capacity of 7.6 wt%. However, its slow hydrogenation and dehydrogenation kinetics and the high temperature of 300 ^\circC required for decomposition are major obstacles to small-scale applications such as automobiles. The local electronic structure of interstitial H in MgH2_2 is an important fundamental knowledge in solving this problem, which has been studied mainly based on density functional theory (DFT). However, few experimental studies have been performed to assess the results of DFT calculations. We have therefore introduced muon (Mu) as pseudo-H into MgH2_2 and investigated the corresponding interstitial H states by analyzing their electronic and dynamical properties in detail. As a result, we observed multiple Mu states similar to those observed in wide-gap oxides, and found that their electronic states can be attributed to relaxed-excited states associated with donor/acceptor levels predicted by the recently proposed "ambipolarity model". This provides an indirect support for the DFT calculations on which the model is based via the donor/acceptor levels. An important implication of the muon results for improved hydrogen kinetics is that dehydrogenation, serving as a reductionreduction for hydrides, stabilizes the interstitial H^- state.Comment: 14 pages, 9 figure

    Approximability of the Subset Sum Reconfiguration Problem

    Get PDF
    The subset sum problem is a well-known NP-complete problem in which we wish to find a packing (subset) of items (integers) into a knapsack with capacity so that the sum of the integers in the packing is at most the capacity of the knapsack and at least a given integer threshold. In this paper, we study the problem of reconfiguring one packing into another packing by moving only one item at a time, while at all times maintaining the feasibility of packings. First we show that this decision problem is strongly NP-hard, and is PSPACE-complete if we are given a conflict graph for the set of items in which each vertex corresponds to an item and each edge represents a pair of items that are not allowed to be packed together into the knapsack. We then study an optimization version of the problem: we wish to maximize the minimum sum among all packings in the reconfiguration. We show that this maximization problem admits a polynomial-time approximation scheme (PTAS), while the problem is APX-hard if we are given a conflict graph

    Planar Drawings of Fixed-Mobile Bigraphs

    Full text link
    A fixed-mobile bigraph G is a bipartite graph such that the vertices of one partition set are given with fixed positions in the plane and the mobile vertices of the other part, together with the edges, must be added to the drawing. We assume that G is planar and study the problem of finding, for a given k >= 0, a planar poly-line drawing of G with at most k bends per edge. In the most general case, we show NP-hardness. For k=0 and under additional constraints on the positions of the fixed or mobile vertices, we either prove that the problem is polynomial-time solvable or prove that it belongs to NP. Finally, we present a polynomial-time testing algorithm for a certain type of "layered" 1-bend drawings

    1/N_c- expansion of the quark condensate at finite temperature

    Get PDF
    Previously the quark and meson properties in a many quark system at finite temperature have been studied within effective QCD approaches in the Hartree approximation. In the present paper we consider the influence of the mesonic correlations on the quark self-energy and on the quark propagator within a systematic 1/Nc1/N_c- expansion. Using a general separable ansatz for the nonlocal interaction, we derive a selfconsistent equation for the 1/Nc1/N_c correction to the quark propagator. For a separable model with cut-off formfactor, we obtain a decrease of the condensate of the order of 20\% at zero temperature. A lowering the critical temperature for the onset of the chiral restoration transition due to the inclusion of mesonic correlations is obtained what seems to be closer to the results from lattice calculations.Comment: 19 pages, REVTeX, 5 figure

    Nonextensive Statistical Mechanics Application to Vibrational Dynamics of Protein Folding

    Full text link
    The vibrational dynamics of protein folding is analyzed in the framework of Tsallis thermostatistics. The generalized partition functions, internal energies, free energies and temperature factor (or Debye-Waller factor) are calculated. It has also been observed that the temperature factor is dependent on the non-extensive parameter q which behaves like a scale parameter in the harmonic oscillator model. As q1q\to 1, we also show that these approximations agree with the result of Gaussian network model.Comment: 8 pages, 2 figure

    N=2 Instanton Effective Action in Omega-background and D3/D(-1)-brane System in R-R Background

    Full text link
    We study the relation between the ADHM construction of instantons in the Omega-background and the fractional D3/D(-1)-branes at the orbifold singularity of C \times C^2/Z_2 in Ramond-Ramond (R-R) 3-form field strength background. We calculate disk amplitudes of open strings connecting the D3/D(-1)-branes in certain R-R background to obtain the D(-1)-brane effective action deformed by the R-R background. We show that the deformed D(-1)-brane effective action agrees with the instanton effective action in the Omega-background.Comment: 35 pages, no figures, references adde

    Fluctuation effects of gauge fields in the slave-boson t-J model

    Full text link
    We present a quantitative study of the charge-spin separation(CSS) phenomenon in a U(1) gauge theory of the t-J model of high-Tc superconductures. We calculate the critical temperature of confinement-deconfinement phase transition below which the CSS takes place.Comment: Latex, 9 pages, 3 figure
    corecore